Extending Families of Curves over Log Regular Schemes

نویسنده

  • Shinichi Mochizuki
چکیده

In this paper, we generalize to the “log regular case” a result of de Jong and Oort which states that any morphism (satisfying certain conditions) from the complement of a divisor with normal crossings in a regular scheme to a moduli stack of stable curves extends over the entire regular scheme. The proof uses the theory of “regular log schemes ” – i.e., schemes with singularities like those of toric varieties – due to K. Kato ([9]). We then use this extension theorem to prove that (under certain natural conditions) any scheme which is a successive fibration of smooth hyperbolic curves may be compactified to a successive fibration of stable curves. 1991 Mathematics Subject Classification: Primary subject: 14H10; Secondary Subject: 14E15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Log smooth extension of family of curves and semi-stable reduction

Summery: We show that a family of smooth stable curves defined on the interior of a log regular scheme is extended to a log smooth scheme over the whole log regular scheme, if it is so at each generic point of the boundary, under a very mild assumption. We also include a proof of the fact that a log smooth scheme over a discrete valuation ring has potentially a semi-stable model. As a consequen...

متن کامل

Projective maximal submodules of extending regular modules

We show  that a projective maximal submodule of afinitely generated, regular, extending module is a directsummand. Hence, every finitely generated, regular, extendingmodule with projective maximal submodules is semisimple. As aconsequence, we observe that every regular, hereditary, extendingmodule is semisimple. This generalizes and simplifies a result of  Dung and   Smith. As another consequen...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

The Abelian Monodromy Extension Property for Families of Curves

Necessary and sufficient conditions are given (in terms of monodromy) for extending a family of smooth curves over an open subset U ⊂ S to a family of stable curves over S. More precisely, we introduce the abelian monodromy extension (AME) property and show that the standard Deligne-Mumford compactification is the unique, maximal AME compactification of the moduli space of curves. We also show ...

متن کامل

Canonical Artin Stacks over Log Smooth Schemes

We develop a theory of toric Artin stacks extending the theories of toric Deligne-Mumford stacks developed by Borisov-Chen-Smith, Fantechi-Mann-Nironi, and Iwanari. We also generalize the Chevalley-Shephard-Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding X is canonically the good moduli space (in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999